The proliferation of nuclear weapons technology in the radical states of the Middle East, Persian Gulf, and south Asia has been steadily accelerating since the 1970s. Under Saddam Hussein, Iraq spent billions of dollars on acquiring and developing ballistic missiles and weapons of mass destruction. In 1991, at the time of the U.S.-led counterattack following the invasion of Kuwait, the totalitarian Iraqi dictator was only a few months away from being able to fabricate a nuclear weapon. Iran has been working steadily to follow this lead, as have Libya, Algeria, and other states. In May 1998, Pakistan followed India in officially entering the nuclear weapons club.

The threats to security and stability posed by the spread of nuclear weapons in the Islamic world go beyond the impacts of the individual national programs and constitute a much wider regional and global threat. These are highly unstable areas, in which terrorism, sponsored, used, and sheltered by states, is endemic, and the concept of *jihad* (holy war) is central. In much of this region, the
degree of hostility toward perceived enemies (“Israel,” “the West,” the “Great Satan”) is extremely high, and the global strictures against the acquisition and use of weapons of mass destruction are ignored.

In addition, despite the many sectarian and nationalist conflicts among groups, the shared element of Islam is seen as providing a basis for cooperation in obtaining these weapons and technologies, and perhaps even the transfer of nuclear arms in times of crisis and conflict. Pan-Islamic ideology is quite powerful, if often violated (as in the case of the Iran-Iraq war, Saddam Hussein’s invasion of Kuwait, etc). In many cases, the development of an “Islamic bomb” is often understood “to be a nuclear weapon acquired for broad ideological reasons — a weapon that supposedly belongs collectively to the Muslim ummah or community and, as such, is the ultimate expression of Islamic solidarity.”

This concept has been stated explicitly by a number of Islamic leaders. Before he was executed, deposed President Zulfikar Ali Bhutto, the architect of Pakistan’s nuclear program, wrote, “We know that Israel and South Africa have full nuclear capability. The Christian, Jewish, and Hindu civilizations have this capability. The Communist powers also possess it. Only the Islamic civilization was without it, but that position was about to change.” Similarly, in an address before an Islamic conference in Tehran in 1992, Iranian Vice President Sayed Ayatollah Mohajerani declared, “The Muslims, must cooperate to produce an atomic bomb, regardless of UN efforts to prevent proliferation.”

Echoing similar sentiments, many Palestinians cheered the Pakistan nuclear tests as part of the extension of a wider Islamic military capability. The Palestinian newspaper Al-Quds printed an illustration of the nuclear mushroom cloud, with an Islamic crescent above it. Pakistan’s image and influence in the Islamic world rose significantly as a result of the nuclear tests. As Pervez Hoodbhoy noted in an article in the Bulletin of Atomic Scientists (1993):

“The bomb looms large in the popular Muslim consciousness as a symbol of Islamic unity, determination, and self-respect. It is seen by many as a guarantee against further humiliating defeats, as the sure sign of a reversal of fortunes, and as a panacea for the ills that have plagued Muslims since the end of the Golden Age of Islam. Such sentiments are echoed by Muslims from Algeria to Syria, and from Iraq to Pakistan. A country that could turn this symbolism into reality would have the support of hundreds of millions of Muslims the world over. It is therefore natural that Pakistan, a Muslim country that is now a de facto nuclear state, should indeed enjoy considerable financial and political benefits from oil-rich Arab countries.”

While, for the most part, the nuclear weapons programs (and, in the case of Pakistan, capabilities) are primarily national, rather than “Islamic,” in the sense of being made available to groups and causes that extend beyond national boundaries, this situation is likely to evolve. In the meantime, the threats to the United States, Israel, Europe, and other potential targets that will be posed by acquisition of nuclear weapons in Iraq, Iran, Libya, Algeria, Syria, and perhaps Egypt are very serious.

In this chapter, we will describe and analyze the 1) nuclear weapons capabilities and technologies, 2) development and acquisition plans and programs, and 3) statements on strategy and goals for Iran, Pakistan, Libya, Syria, Egypt, Saudi Arabia, and Algeria. For each country, we will present information based on a detailed study of the sources, including U.S. government and other official reports, the academic literature, and press reports. The country assessments will also include analysis of technological acquisitions (include dual-use systems, materials, and facilities), delivery systems such as ballistic missiles, and cooperation with third countries, including Russia, China, and North Korea, and well as between themselves. Because of the United States’ destruction of Saddam Hussein’s Baathist regime, our discussion of Iraqi nuclear capabilities will consist of historical background, with Iraq, at the present time, no longer considered a threat in the context of other regimes.

On this basis, the implications of the proliferation of nuclear weapons and technology in the Arab and Islamic world will be analyzed. In the case of Pakistan, this section will focus on the impact of the nuclear weapons capability on the balance of power in the region (including the Persian Gulf), on the nuclear ambitions and...
programs of the other states in the region, and the potential for transfer of technology and experienced personnel. Regarding the Iranian nuclear acquisition program, we will examine the security implications for the region (including Israel), and for future deployment of U.S. and NATO forces and interests in the region. We will also consider the implications of the accelerating nuclear proliferation process in this region for European security interests.

IRAQ

Iraq's efforts to acquire nuclear weapons began many years ago, and continued despite wars, attacks, and international sanctions imposed following the invasion of Kuwait in August 1990, and the war that followed.

In the early 1970s, Iraq attempted, unsuccessfully, to purchase a plutonium production reactor that was similar to the one France utilized in its nuclear weapons program.8 In 1976, France and Iraq reached an agreement on the construction of the Osirak and Isis reactors — which were part of Iraq's sizeable nuclear research complex at Tuwaitha in Baghdad. This led to greater vigilance by outside powers, including Israel, leading to a series of setbacks in the Iraqi effort. However, Khidhir Hamza, a former physicist who worked on Iraqi nuclear weapons since 1970 (and defected in 1994), reports that in 1979 (when Saddam became president), the project was accelerated.9 In June 1981, after efforts to gain international cooperation in stopping the flow of nuclear weapons technology to Iraq failed, Israel launched an air strike against the Osirak nuclear reactor, just before its first fuel was to be loaded.

Following the destruction of the reactor, the central effort was shifted to the production of highly enriched uranium, and Iraqi scientists investigated many different techniques for uranium enrichment. However, Iraq still maintained an interest in acquiring plutonium as fissile material for weapons, albeit on a lower level. Following the end of the war with Iran, more resources were made available for the acquisition of nuclear technology, and in 1988, Iraq attempted to obtain the components and technology for the URENCO gas-centrifuge process. During this period, Saddam Hussein increased the priority of acquiring a nuclear weapons capability, and accelerated the rate of development and acquisition of technology, materials, and expertise.10 A wide acquisition network was formed, with branches in many countries around the world. In 1990, Iraq initiated a crash program to divert reactor fuel (highly enriched uranium) under IAEA safeguards, to the production of nuclear weapons.

At the time of the Gulf War (January 1991), Iraq maintained a sophisticated and wide-ranging nuclear weapons development program, which was supported by at least 16 primary and supporting facilities.11 The program employed 10,000 people, and had a multi-year budget of approximately $10 billion.12 According to Hamza, the project was close to completion at the time of the Gulf War.13 (The prototype bomb was a “hulking, blimp-shaped, stainless steel device minus, of course, its uranium core,” that would not fit on a missile.)

IRAN

Iran's nuclear program began in 1967, with the delivery of a U.S.-supplied 5 megawatt (MW) research reactor at Tehran University.14 In 1974, Iran established the AEOI — the Atomic Energy Organization of Iran. Iran maintains two operational (5 MW and 30 kilowatt [KW]) research reactors, as well as a .01 KW critical assembly at Esfahan and Tehran.15

A third reactor, named Bushehr, is the core of the Iranian nuclear program. Construction was initiated by Germany (Siemens) in the 1970s, suspended in 1979 (due to the Islamic revolution16), and subsequently revived based on Russian assistance. The initial agreement (estimated to be worth $1 billion) was signed in 1995, but work on the 1,000 MW reactor did not begin until February 1998.17 In March 1998, Iranian and Russian officials agreed in principle on construction of two more reactors for the Bushehr complex,18 and in November 1998, Russia and Iran announced that they were studying the possibility of building three more nuclear reactors at Bushehr.19

Iran also turned to China for assistance, and in 1990, the two countries signed a ten-year nuclear cooperation agreement.20 In 1994, a contract was signed with China's National Nuclear Corporation for the construction of two 300 MW power reactors,21 but the contract was cancelled in 1997.
Although the U.S. administration initiated a series of high-level dialogues (the Gore-Chernomyrdin Commission) with the Russian government in the effort to slow the flow of Russian assistance, these efforts had little or no impact. In 1995, Iran attempted to purchase a uranium enrichment plant from Russia, and in April 1998, Russia and Iran held talks regarding the construction of a research reactor utilizing 20 percent enriched uranium. In May 1998, the head of the Iranian Atomic Energy Organization visited Russia, to discuss further cooperation and purchases.

In October 1998, Western intelligence reported that Iran (led by the AEOI) was attempting to acquire equipment for laser enrichment of nuclear materials. According to the American officials “there is no question that the turn-key facility was intended for” Iran's nuclear weapons program. Laser enrichment is considered to be uneconomical for producing the low-enriched uranium used in civilian power reactors. The official Russian response has been that Moscow did not know of the contract until early last year because the Science and Technology Center of Microtechnology (a unit of the government's D.V. Efremov Institute of St. Petersburg), had not sought an export permit, on the grounds that no sensitive technology was involved. A senior U.S. official said that some Russian laser-related equipment theoretically could be cleared for export to Iran but that the U.S. government believed that, “taken as a whole package,” the laser facility clearly “was intended and designed for weapons-grade enrichment.”

In April 1999, the Russian Izhorskiye Zavod (machine-building company in St. Petersburg) began producing equipment for the primary circuit at Bushehr. This included the reactor vessel, steam generator casing, and internals. In January 2000, Iran's President Muhammad Khatami sent a message to acting president of the Russian Federation Putin, stating the expectation that ties between the two states would be extended further. In mid-January, Russia's Foreign and Defense Ministers met with the Secretary of Iran's Supreme National Security Council, and declared that Moscow intended to fulfill its obligations under the relevant agreements. Atomic Affairs Minister Adamov denied reports that Russia had agreed to stop nuclear collaboration with Iran.

In February 2000, the U.S. Senate approved legislation imposing sanctions on entities that assisted Iran's chemical, biological, and nuclear weapons programs. In June 2000, the U.S. government reported that a nuclear research center in Tehran was importing tritium from Russia. Tritium is a radioactive gas used primarily to enhance the explosive power of nuclear warheads. One American nuclear specialist noted that “This is an issue of concern and one would expect Iran to be very forthcoming in providing assurances about what it is being used for.”

Russian construction and engineering crews continued to work on the Bushehr nuclear power reactor project. In May 2000, Iran's ambassador to Russia, Mehdi Safari, declared that the nuclear power station was 40 percent complete, and would become operational in 2002. However, work on the complex has been somewhat delayed due to American sanctions. As such, the date of completion remains highly speculative. Assessments of progress in the Iranian nuclear sphere vary considerably. In 1993, the Central Intelligence Agency (CIA) stated that Iran was eight to ten years away from acquiring nuclear weapons; foreign assistance was said to be critical. However, in 1999 the CIA warned that Iran might soon be able to produce a nuclear weapon. Clearly, Russian and Chinese assistance has accelerated the rate of Iranian nuclear development significantly. According to Marine General Anthony Zinni, former head of U.S. Central Command, “I would say they are on track, within five years, they would have the capability [by then].”

Iranian officials formally deny that they are pursuing a military nuclear path. Dr. Amrollahi (of the AEOI) declared, “We would like to tell the world community that if our activities were not peaceful, the IAEA would have said so.”

Yet, an earlier statement by President Ali Khamene’i, in a February 1987 address to Iran’s Atomic Energy Organization, sharply contrasted Iran’s policy of denying military nuclear intentions:

Regarding atomic energy, we need it now. . . . Our nation has always been threatened from outside. The least we can do to face this danger is to let our enemies know that
we can defend ourselves. Therefore, every step you take here is in defense of your country and your evolution. With this in mind, you should work hard and at great speed.41

Missiles

- Approximately 150 Scud-Cs — 500 km range, 700 kg payload.42
- Up to 200 Scud-Bs — 300 km range, 985 kg payload.43
- Approximately 25 CSS-8s — 150 km range, 190 kg payload.44
- Unknown quantity of indigenous-manufactured *Mushak* missiles — range from 120 km to 200 km, payload from 150 kg to 500 kg.45
- Currently developing *Shihab*-3, over 1,000 km range, over 700 kg payload; the *Shihab*-4, 2,000 km range, 1,000 kg payload; and the *Shihab*-5, which will have a range of 10,000 km.46 On July 15, Iran successfully conducted the second test of its *Shihab*-3 missile, reportedly using one of a dozen North Korean rocket motors supplied to Tehran in 1999.47 (The first test was conducted in July 1998, but the missile did not complete a full trajectory.)48

In a report to the Subcommittee on Space and Aeronautics, Kenneth Timmerman stated that Iran is developing a new missile, named “*Kosar*.” The *Kosar* is structured around the Soviet SS-5 missile, uses the same RD-216 liquid fuel rocket motor, and has a range of 4,250 km. There are reports that the *Kosar* is the basis for Iran’s space launch vehicle.49

PAKISTAN

Although relatively removed from the conflicts in the Middle East, Pakistan clearly represents a major threat to India, as well as to other states in the region. The increasing political instability, as reflected in the military coup in October 12, 1999, that ousted the government of Muhammad Nawaz Sharif, and the role of radical Islam, are causes for growing concern, particularly given Pakistan’s status as a de-facto nuclear weapons state.

On May 28, 1998 (a short while after five Indian nuclear tests), Pakistan announced that it had successfully completed five nuclear tests, which were reportedly carried out over a two-hour period in Balochistan.50 According to the Pakistan Atomic Energy Commission, the nuclear tests measured up to 5.0 on the Richter scale, and had a (reported) yield of up to 40 kilotons (KT) (equivalent TNT).51 One of the tested nuclear devices was said to be a boosted uranium device, while the other tests were (low yield) sub-KT devices.52 On May 30, 1998, Pakistan tested an additional nuclear warhead (with a yield of 12 KT), bringing the total amount of Pakistani nuclear tests to six.53

Pakistan’s nuclear program has reportedly progressed considerably following the successful nuclear tests in 1998.54 Although the Pakistani government declared a moratorium on further nuclear weapons tests in June 1998,55 two nuclear reactors, along with a plutonium processing facility, have since become operational. In addition, reports indicated that Pakistan may now be able to produce enough plutonium to manufacture one atomic bomb per year.56

In addition, concerns regarding Pakistani nuclear and missile cooperation with other states in the region are increasing. In 1999, the Saudi Arabian defense minister, Prince Sultan, visited Pakistan’s secret nuclear facilities at Kahuta and a missile factory.57

History

The Pakistan Atomic Energy Commission (PAEC) was established in 1955, and in 1965, Pakistani Prime Minister Zulfi kar Ali Bhutto declared: “If India builds the bomb, we will eat grass or leaves, even go hungry. But we will get one of our own.”58 In 1972, Bhutto assembled Pakistan’s top scientists at Multan, and ordered them to build an atomic bomb.59 In 1974, after India conducted a nuclear test, Bhutto declared that Pakistan must develop its own “Islamic bomb.”60

Following Bhutto’s statement, Pakistan’s nuclear program accelerated considerably. In October 1974, Pakistan signed a contract with France for the design of a reprocessing facility for the fuel from its power plant at Karachi and others.61 However, in response to pressure from the United States, the import of key components became more difficult.62 China provided assistance in the development of gas
centrifuges, and the uranium enrichment facility began operation in the early 1980s.

In 1989, Pakistan tested a short-range missile, capable of carrying a nuclear payload. In 1990, the United States suspended military aid to Pakistan, after President Bush stated that he could not certify that Pakistan did not possess nuclear weapons. In 1992, Pakistani Foreign Minister, Shahryar Khan, declared that Pakistan possessed the components and knowledge to manufacture at least one nuclear explosive “device.” In 1994, German officials announced the seizure of preforms for gas centrifuge scoops intended for use in Pakistan.

However, by the mid-1990s, reports indicated that Pakistan's nuclear arsenal consisted of at least ten nuclear warheads based on a Chinese design. In February of 1996, British custom officials seized a shipment of Swedish laser measuring equipment slated for a Pakistani company that was well known to be a “front” for Pakistan's nuclear weapon program. In addition, the CIA revealed that China clandestinely sold 5,000 ring magnets to Pakistan's A.Q. Khan Research Laboratories. In September 1996, reports indicated that China had sold (in 1996) an industrial furnace and high-tech diagnostic equipment, with military applications, to an unsafeguarded nuclear facility in Pakistan.

The Pakistan Institute of Nuclear Science and Technology (PINSTECH) site with Pakistan's New Laboratories (also known as New Labs) includes an experimental-scale plutonium re-processing plant, capable of re-processing 10-20 kg of plutonium on a yearly basis. Construction of New Labs (based on French design) began in 1976, and, according to reports, has been completed. Apparently, both “cold” and “hot” tests have been conducted at the facility. PINSTECH also hosts a small-scale reprocessing laboratory that utilizes a solvent extraction method in addition to the Nuclear Track Detection Laboratory, an entity that carries out exploration for uranium. The Center for Nuclear Studies, also based at PINSTECH, is Pakistan's primary nuclear training school.

Among its goals, Pakistan is seeking to develop the capability to produce plutonium for potential weapons use. A 50-70 MW heavy-water moderated plutonium reactor located at Kushab, and constructed with Chinese assistance, became operational in 1998. A U.S. official was quoted as stating that Khushab is: “being operated as a dedicated weapons plutonium production reactor.” In March 2000, Nucleonics Week reported that Pakistan had successfully obtained (through smuggling) components, as well as equipment, for a heavy water production plant at Khushab. Another non-safeguarded heavy water production facility supplied by Belgium in 1980 (with a yearly capacity of 13 MT) is located at Multan.

The Pakistan Institute of Nuclear Science and Technology (PINSTECH) site with Pakistan's New Laboratories (also known as New Labs) includes an experimental-scale plutonium re-processing plant, capable of re-processing 10-20 kg of plutonium on a yearly basis. Construction of New Labs (based on French design) began in 1976, and, according to reports, has been completed. Apparently, both “cold” and “hot” tests have been conducted at the facility. PINSTECH also hosts a small-scale reprocessing laboratory that utilizes a solvent extraction method in addition to the Nuclear Track Detection Laboratory, an entity that carries out exploration for uranium. The Center for Nuclear Studies, also based at PINSTECH, is Pakistan's primary nuclear training school.

There is also a partially built plutonium reprocessing plant at Chashma. Construction of the plant was begun by the French, but was subsequently halted in 1978. According to U.S. intelligence statements, either Pakistan or China may be re-building the plant.

In 1987, Pakistan received a tritium purification and production facility (with a daily production capability of 5–10 grams of tritium) from West Germany. PARR-1 is a 10 MW high flux, (upgrade from its original 5 MW capacity) pool type research reactor supplied by the United States in 1965. PARR-1 is under IAEA safeguards, and originally utilized uranium enriched up to 90 percent, but has since been converted to use 20 percent enriched uranium. According to reports, Lithium-6 targets were irradiated on a test basis, for later use in tritium separation.
Missiles

Pakistan’s efforts to develop and manufacture long-range ballistic-missiles capable of carrying nuclear warheads is part of a strategy to counter India’s military capabilities. Missiles

Pakistan’s missile arsenal includes:

- The **Ghauri** MRBM (Pakistani developed and manufactured) is a medium-range ballistic missile using liquid propellant, based on North Korea’s **No Dong** MRBM, (range 1,500 km; payload 700 kg. However, it is more likely that its range is similar to the North Korean **No Dong** — 1,300 km.

- The **Shaheen-1** SRBM (Pakistani developed and manufactured) solid-fueled, 750 km range.

- The **Hatf-1** is a Pakistani developed and manufactured solid propellant missile with an 80 km range.

- The **M-11** SRBM is a (mobile) Chinese manufactured missile with a 290 km range, and is capable of carrying an 800 kg warhead. According to reports, the M-11 is a single-stage, solid-propellant missile, with an inertial mid-course guidance system. Reportedly, Pakistan’s HATF III will be based on this model.

According to Pakistani officials, Pakistan is currently developing two new missiles, the **Ghaznavi**, and the **Shabeen-II**. Both have a (intended) range of 2,000 km — a range sufficient to reach any location in India.

LIBYA

Libya has attempted to obtain nuclear material and technology from Pakistan, China, the Soviet Union (now Russia), Argentina, India, and Belgium. Libya’s December 2003 pledge to dismantle its weapons programs are encouraging, but we will still consider the country’s weapons-development history.

Currently, Libya’s basic nuclear program includes a small research reactor (which was provided by the Soviet Union in the mid-1970s at the Tajura nuclear research center), and could be operating several minor nuclear research facilities. According to Gordon C. Oehler, “Persistent efforts to deny Libya access to nuclear, BW, and delivery system technology have hobbled Qadhafi’s programs and forced him to turn to less advanced technologies and less reliable sources available in the gray and black markets of the developing world.” However, a CIA report notes that:

Libya continues to develop its nascent and still rudimentary nuclear research and development program but still requires significant foreign assistance to advance to a nuclear weapons option. In the latter half of 1999, Tripoli and Moscow resumed discussions on cooperation at the Tajura Nuclear Research Center and on a potential power reactor deal. Should this civil-sector work come to fruition, Libya could gain opportunities to conduct weapons related R&D.

Libya ratified the NPT treaty in 1975, which had been signed earlier by the Idris regime in 1969, but has not signed the CTBT. In 1980, Libya reached an agreement with the IAEA to place (all of) Libya’s nuclear infrastructure under international inspection. However, despite the accord with the IAEA, Qadhafi has continually stated Libya’s desire to acquire nuclear weapons.

In 1977, Qadhafi embarked on a program of nuclear (and other) cooperation with Pakistan. For a while, it appeared as if this program had produced tangible results. Libya provided financial aid and delivered uranium “yellow cakes” (that originated in Niger), hoping that it would be compensated in the form of weapons from Pakistan. However, Pakistan ended its nuclear relations with Libya before the success of Pakistan’s atomic bomb — leaving Qadhafi without any nuclear gains.

Nevertheless, despite reports of nuclear cooperation between Pakistan and Libya, Qadhafi (in 1986) stated that Libya would never help Pakistan acquire an atomic bomb. He said, “We consider nuclear weapons production a great mistake against humanity.” In 1979, the Soviet Union supplied Libya with a 10 MW nuclear reactor, which was installed at a Libyan research center. The center was staffed with 750 Libyan specialists and technicians. Nevertheless, many students were sent abroad for additional training, and
200 Libyans studied nuclear science materials in the United States until 1983 — when training nuclear training for Libyans was prohibited.115

In the early 1980s, Libya considered buying a power station from the Soviet Union, but displeased with Soviet technology, turned to the Belgian firm Belgonucleaire to take over the engineering contract and supply equipment. The United States objected to the deal, and Belgium decided, (in 1984) to refuse the United States $1 billion contract. Subsequently, Libya re-confirmed their agreement with Moscow to construct an 880 MW power station to be located in the Surt region. The total cost of the power station was over $4 billion.116

In 1983, the Tajura nuclear research center became operational.117 The research center includes a small research reactor, (provided by the Russians in the 1970s)118 and, as noted above, in 1999, Libya and Russia and Moscow resumed discussions about resuming cooperation and discussed a potential power reactor deal.119

Missiles and Other Delivery Systems
- Scud-C variant — 550 km range, 500 kg payload.120
- 100+ Scud-B missiles — 300 km range, 985 kg payload.121
- SS-21 Scarab — 70 km range, 480 kg payload.122
- Current program to develop Al Fatah (Ilisslat) missile with 950 km. range — 500 kg payload. Has been under slow development for over 15 years.123

SYRIA

Syria does not have an active and advanced nuclear program, but following the pattern in a number of other states in the Middle East and elsewhere, the Syrians have been slowly building a foundation in both missile and nuclear technology. This foundation is largely based on civil research and dual-use applications, including a small 30 KW neutron research reactor in Damascus, which is operated under IAEA safeguards.124 The fertilizer plant at Homs is owned and operated by the Atomic Commission of Syria, and this plant is being prepared for recovering uranium from phosphates.

According to the Federation of American Scientists, in 1979, Syria reportedly initiated a military nuclear program — and has not provided the IAEA with complete information regarding these activities.125

The Russian government has been seeking to expand its influence in the region through the export of sensitive and dual-use technologies (see the discussion of the Iranian case), and this process included the re-establishment of traditional ties between Moscow and Damascus. On February 23, 1998, the two countries signed an agreement regarding the “peaceful” use of nuclear energy, and in July 1998, a memorandum was signed regarding the construction of a 25 MW light water nuclear research center in Syria, which included the participation of Russia’s Atomstroyexport and Nikiet.126 On May 19, Russia and Syria signed a cooperative agreement, in the fields of scientific, technical, and economic cooperation in the peaceful application of nuclear energy.127

In its 2000 report on WMD proliferation, the CIA stated: “As to Syria’s embryonic nuclear research and development program, we will continue to monitor the potential for this program to expand. Moscow and Damascus agreed in 1999 to cooperate on peaceful uses of nuclear energy in a wide area of disciplines.”128

Missiles and other delivery systems
- 60-120 Scud-C — 500 km range, 500 kg payload.129
- Up to 200 Scud-B missiles — 300 km range, 985 kg payload.130
- 200 SS-21 Scarab — 70 km range, 480 kg payload.131
- In the process of developing indigenous production capability for M-9 [CSS-6 or DF-15] missiles – 600 km range, 500 kg payload.132

EGYPT

Egypt continues to play a primary role in the Arab world, and has sought to maintain advanced military capabilities, including ballistic missiles, chemical, and, to a lesser degree, biological weapons as well. However, Egyptian policy in the area of nuclear weapons development is somewhat exceptional, and has been relatively dormant for some...
time. The major cause for concern is the possibility that following regional developments, and the India and Pakistani nuclear tests of 1998, the Egyptian pursuit of nuclear weapons may resume.

Egypt’s nuclear program began in 1954, and significantly progressed in 1961, following the acquisition of a 2 MW research reactor from the Soviet Union. Following the 1967 War, however, Egypt’s nuclear program declined, after many of its nuclear experts emigrated abroad and economic difficulties increased. Nevertheless, serious work in the nuclear sphere continued.

In the mid 1970s, as part of the realignment away from the Soviet Union and the beginning of peace negotiations with Israel, the United States agreed to provide Egypt with eight nuclear power plants. The U.S. proposal required accession to the NPT, and Egypt ratified the treaty in 1981. However, following the Israeli decision to forgo the American plan, the U.S. offer to Egypt lapsed. In September 1992, Egypt signed a contract with Invap, Argentina’s nuclear organization, to build a 22 MW research reactor at Inshas. Construction began in March 1993 and became operational in 1998.

In addition to the two nuclear reactors, Egypt operates a hot cell complex for plutonium extraction research, and a pilot nuclear fuel factory that is utilized to process natural uranium mined in Egypt. Egypt is also striving to develop uranium fuel independently. Egypt has reportedly signed contracts with Australia, Canada, and Niger to buy mining technology — and aid in processing uranium ore. Egypt also maintains scientific projects under the tutelage of the IAEA, and has bilateral agreements regarding the peaceful use of atomic energy with Germany, the United States, Russia, India, China, and Argentina. The UK and India provide assistance to Egypt in scientific research training, and atomic projects as well.

Although the evidence indicates that Egypt dropped its nuclear weapons efforts in the 1960s, some Egyptians have called for a renewed effort toward this goal. Officials and journalists often argue that Israel’s nuclear capability is a justification for Arab nations to build atomic bombs. Apparently, Egyptian rhetoric has given way to action — and Egypt is currently building ballistic missiles capable of carrying a nuclear payload. Following the 1998 Indian and Pakistani tests, reports of Egyptian-Syrian and Saudi Arabian cooperation in this area increased.

SAUDI ARABIA

Although Saudi Arabia is a signatory to the NPT and is not generally viewed as a country of concern in the area of nuclear proliferation, a number of reports and allegations of Saudi efforts to acquire nuclear weapons have been published over the past years. In 1994, news reports indicated that Saudi Arabia had tried to acquire nuclear weapons from Iraq. These reports were based on the allegations of a former Saudi diplomat, Mohammed Khilewi, who later sought asylum in the United States. According to Khilewi, Saudi Arabia provided $5 billion for Iraq’s nuclear program during the 1980s, in return for a nuclear weapon. Khilewi also alleged that Saudi Arabia possessed two (undeclared) nuclear research reactors. However, these claims were never corroborated — and U.S. officials have stated that they have no evidence of Saudi assistance to Iraqi nuclear development.

In 1999, Saudi Defense Minister, Prince Sultan bin Abdul-Aziz, visited Pakistan’s Kahuta uranium enrichment plant and missile factory. Aziz denied the allegations, stating:

Saudi Arabia is a signatory of the nuclear non-proliferation treaty and is committed to its international pledges. . . . [The visit did not] exceed the first entrances of the site and did not include secret facilities as was reported. . . . We are proud that our relations with Pakistan are always friendly and strong and they should not be interpreted as something else.

The Saudi acquisition of long-range strategic missiles is also seen as an indication of intentions in this area. The missiles include 40 to 60 Chinese CSS-2[DF-3] missiles with 2,400 km range and 2,500 kg payload, deployed at al-Sulaïyil and al-Joffer, 500 km and 100 km south of Riyadh, respectively. Each site includes four-to-six concrete launch pads.

ALGERIA

In 1984, Algeria purchased 150 tons of uranium concentrate from Niger, and there are numerous reports of cooperation with Iraq.
in this area dating from the 1980s. Attention to Algeria’s nuclear efforts was drawn in the early 1990s, when an unreported thermal heavy water moderated 15 MW nuclear reactor (with the potential for upgrading to 40 MW) was discovered via space imaging. The Es Salam reactor was supplied by China and apparently became operational in 1992 or 1993. In addition, Algeria operates a one MW Argentinian pool-type research reactor, which first went critical in 1989. Both nuclear reactors are now under IAEA safeguards. The Es Salam nuclear is estimated to have the capability to produce three to five kilograms of plutonium per year. In addition, reports claim that the nuclear facility includes a Chinese-supplied hot cell that can be used to separate plutonium, albeit on a small scale, and a facility for the production of radioisotopes.

The construction of this reactor in an isolated part of Algeria was kept secret for a number of years, until the construction activity and telltale security perimeter were discovered using satellite imaging. A large, heavy-walled building nearby may have been intended as a full-scale plutonium plant, and a Soviet-made SA-5 surface-to-air missile battery was located at the site. When it was first discovered, Algerian officials claimed that the reactor was designed for “peaceful purposes,” such as electrical power generation and production of radioactive isotopes for medical research. However, as analysts noted, “There are no electrical-power generation facilities at the reactor and no electric-power transmission lines are nearby This is clearly a military nuclear reactor for weapons production.”

China is also reported to have supplied Algeria with nuclear weapons technology, as well as expertise on matching nuclear weapons to various aerial and missile delivery systems. Under pressure from the United States, Algeria accepted IAEA safeguards in 1992, joined the Nuclear Non-Proliferation Treaty (NPT) in 1995, and signed the CTBT on October 15, 1996.

As in the cases of Iraq, Iran, and other would-be proliferators, the capability for developing nuclear weapons continues, as does the concern regarding Algerian intentions. As Spanish government analysts noted in 1998:

... the knowledge obtained by an impressive staff of experts and scientists, as well as the availability of the installations which it will have at the end of the century, will place this country in an advantageous position to restart a military program if the corresponding political decision is taken.

Similarly, David Albright concluded that Algeria “might have the facilities necessary to produce military plutonium, the key element in nuclear weapons” in two years.

In addition, Algeria has been a transfer point for nuclear materials, and there is evidence that uranium dioxide purchased from Argentina was delivered to Iran.

With regard to weapons delivery, the Algerian armed forces possess a variety of bombers, including the Su-24 Fencer, as well as short-range missiles and launchers, and (Soviet-manufactured) rockets.

IMPLICATIONS

Despite the efforts of the United States government during the past decade, the proliferation of weapons of mass destruction and ballistic missile technology in the Middle East has accelerated. Most other countries and leaders around the world did not share these concerns, and even when they did, their actions were very limited.

The U.S.-led sanctions and export limitations may have slowed but did not prevent this process, particularly with respect to Iran. In the case of Iraq, the unprecedented degree of intrusion established in the UNSCOM inspection and verification regime, as well as ten years of sanctions, did not force Saddam Hussein to halt efforts to preserve and acquire new WMD and missile capabilities. Following the Iraqi lead, additional states will pursue such weapons without fear of censure or stigma.

For Israel, as well other countries in the region, and also for the United States and Western Europe, these developments require major adjustments in military strategy. The deterrence and defense against WMD threats has become the primary focus of Israeli security policy, and in the United States, the need for greater attention to these threats was emphasized by the report of the Rumsfeld Commission and in other strategic planning frameworks. In NATO, the WMD and missile threats from the Middle East are also gaining
increased attention, as reflected in discussions of joint approaches and responses. Unless there is a radical change in the implementation of policies designed to slow or prevent proliferation, within the next decade, the number of states in the Middle East with a nuclear weapons capability, as well as biological weapons and long-range delivery systems, is likely to increase dramatically. In the Middle East, the emergence of a multipolar WMD environment in the next decade is increasingly likely.

Endnotes
4. Ibid.
5. Ibid.
7. The combination of religious and ethnic hatreds, reactionary internal forces, and failed leadership in Muslim society grasping to achieve nuclear weapons capabilities are also major sources for criticism. One critic in the region has argued that it is difficult to recall a more demoralized and corrupt community in the annals of history. Each of the 30-odd "Islamic" governments are dominated by self-serving rulers. . . . All are addicted to armaments and to dependence on suppliers. All are littered with machines but command no technology. Not one is home to a university or research center of repute. They lack the will no less than the know-how to transform wealth into capital, importance into influence, resource into power.

Hoodbhoy, "Myth-Building: The 'Islamic' Bomb."
11. The majority of the facilities were in Baghdad, and the periphery of the city, but others were located in Mosul in the north, and Al Qaim and Akashat, in the west near the Syrian border, Office of the Secretary of Defense, Report of the Quadrennial Defense Review.
21. Ibid.
22. Ibid.
23. Ibid.
31. Ibid.

Gerald M. Steinberg and Aharon Etengoff

35 According to Russian Atomic Power Minister Yevgeny Adamov, Tehran plans to place orders for three more reactors at Bushehr. Adamov also stated that the Russian leadership had to “occupy a more active position on the world arena.” “Moscow To Supply 8 Atomic Reactors To India and Iran,” DPA, April 2, 2000; “Iranian Nuclear Reactor 40 Percent Complete Says Ambassador,” Agence France Presse, May 23, 2000.

37 In October of 1999, Iran threatened to withhold further nuclear contracts from Russia for failing to complete the Bushehr plant in time. In February 2000, Russia's Ministry of Atomic Energy acknowledged that the project was running 18 months behind schedule, and in June 2000, Russia's deputy minister for atomic energy stated that the Bushehr plant would be completed in 2002. Although the date of completion remains highly speculative, press reports note that Bushehr is expected to be online by 2003, Risk Report, vol. 6, no. 4 (July-August 2000), <http://www.wisconsinproject.org/countries/iran/nuke-miles.htm>; Modher Amin, “Iran Nuclear Power Plant to be Operational by 2003,” UPI, January 31, 2001.

39 Programme for Promoting Nuclear Non-Proliferation (PPNN) Newsbrief No. 49, 1st Quarter, 2000, p. 16.

43 Ibid.

44 Ibid.

45 Ibid.

50 The tests were carried out despite U.S. efforts (which included an offer of economic and military benefits) to convince Pakistan not to go ahead with the tests. Earlier U.S. efforts to curb Pakistan’s nuclear program were apparently unsuccessful—limited sanctions were leveled at Pakistan in 1990, because of the uncertainty over whether or not Pakistan possessed a nuclear device. Following the Indian and Pakistani tests in 1998, the Clinton administration slapped economic sanctions on the two states—but did not sever ties. The Clinton sanctions halted economic aid, loans, and military sales, but significantly did not ban loans to non-government companies, or investment by U.S. companies. However, sales of dual-use items were stopped, and banks were prohibited from lending money to either government. It should be noted that the majority of other countries, i.e., Britain, France, and Russia, chose not to impose any sanctions. “Pakistan Nuclear Weapons,” FAS, <http://www.fas.org/nuke/guide/pakistan/nuke/index.html>; “India-Pakistan: Nuclear Weapons Update 1998,” Risk Report, vol. 4, no. 6, November–December 1998, <http://www.wisconsinproject.org/countries/pakistan/nuke98.html>.
It should be noted that Pakistani data regarding the nuclear tests cannot be confirmed seismically by outside sources. Indeed, Indian sources have suggested that only two nuclear weapons were detonated — and had lower yields than Pakistan claimed. Nonetheless, seismic information indicated at least two, and perhaps a third, test in the initial round of tests, and one on May 30th. "Pakistan Nuclear Weapons," EAS, <http://www.fas.org/nuke/guide/pakistan/nuke/index.html>.

Ibid.

Ibid. However, Pakistani sources have claimed that at least one nuclear device, (originally slated to be tested on May 30th) remains underground, and is ready for detonation.

Nonetheless, Pakistan has stated that it will not assemble or deploy its nuclear warheads, nor will it resume testing unless India does so first. . . . In addition, Pakistan has agreed to enter into negotiations to complete a fissile material cutoff agreement — but has not agreed to halt production of fissile material before signing the treaty. Office of the Secretary of Defense, Proliferation: Threat and Response, (Washington, DC: U.S. Department of Defense, January 2001), <http://www.defenselink.mil>.

Ibid.

Ibid.

Ibid.

Ibid.

Ibid.

Ibid.

In 1996, reports indicated that the A.Q. Khan Research Laboratory had received 5,000 ring magnets, which could be used in gas centrifuges, from a Chinese nuclear company. "Pakistan Nuclear Weapons," EAS, <http://www.fas.org/nuke/guide/pakistan/nuke/index.html>.

Ibid.

Ibid.

Ibid.

It should be noted that China's nuclear aid to Pakistan began long before the 1986 Sino-Pakistani atomic cooperation agreement. Indeed, important Sino-Pakistan transfers occurred during the period of 1980–1985. Reportedly, China provided Pakistan with the design of one of its warheads, as well as enough HEU for a small amount of weapons, "Pakistan Nuclear Weapons," EAS, <http://www.fas.org/nuke/guide/pakistan/nuke/index.html>.

Ibid.

Ibid.

Ibid.

After the successful 1999 tests of the Ghauri and Sha-heen-1 missiles, Pakistan announced the conclusion (“for now”) of “the series of flight tests involving solid- and liquid-fuel rocket motor technologies.” Pakistan also asked India to participate in a “strategic restraint regime” that would limit the development of missile and nuclear weapons technology, as well as deployment, Office of the Secretary of Defense, Proliferation: Threat and Response, Washington, DC: U.S. Department of Defense, January 2001, <http://www.defenselink.mil>.

In 1974, Libya and Argentina finalized a deal, under which Argentina would provide Tripoli with equipment for uranium mining and processing. Apparently, Argentina had already extracted plutonium from spent reactor fuel, although it remains uncertain if the agreement with Libya provided any assistance in this area. However, in 1982, during the war over the Falkland Islands, Libya provided Argentina with $100 million in anti-aircraft and air-to-air missiles. It has been suggested that Argentina may have provided nuclear information or technology to Libya. Indeed, according to a May 1983 report, Argentina and Libya continued nuclear contacts after the war, during which discussions about reprocessing and enrichment technologies probably occurred. In 1985, reports indicate that Argentina planned on selling a hot cell facility to Libya — but pressure from the United States prevented the sale. Rodney W. Jones, Mark G. McDonough, Toby F. Dalton, and Gregory D. Koblentz, "Argentina," from Tracking Nuclear Proliferation, Carnegie Endowment for International Peace, July 1998. <http://www.ceip.org/programs/npn/npnpargn.htm>.

130 Ibid.

131 Ibid.

132 Ibid.

133 The 2 MW research reactor was supplied by the Soviets, and began operating in 1961. It was shut down for renovation during the 1980s, but re-opened in 1990. The reactor runs on 10%-enriched uranium fuel. “Egypt’s Budding Nuclear Program,” Risk Report, vol. 2, no. 5 (September–October 1996), <http://www.wisconsinproject.org/countries/egypt/nuke.html>.

136 Ibid.

139 Ibid. Supplied by France.

140 Ibid.

141 Ibid.

145 Egypt’s missile capability and developments: 100+ SS-1 (Scud-B) with 300 km range and 985 kg payload; approximately 90 Project T missiles with 450 km range and 985 kg payload; developing Scud-C variant production capability with DPRK assistance; with 550 km range and 500 kg payload; developing Vector missile with 800 km to 1,200 km range and 450–1,000 kg payload. It has been alleged by U.S. and Israeli intelligence that Egyptian government companies are acquiring and exporting U.S. (and Western) technology to N. Korea for alterations — which is then returned to Egypt as advanced missile components. Egypt is also suspected of working with China and (N. Korea) to develop missiles and non-conventional weapons. “Egypt’s Budding Nuclear Program,” Risk Report, vol. 2, no. 5 (September–October 1996), <http://www.wisconsinproject.org/countries/egypt/nuke.html>; “Weapons of Mass Destruction In The Middle East,” Monterey Institute Center for Nonproliferation Studies, <http://cns.miis.edu/research/wmdme/egypt.htm>.

148 Ibid.

150 Ibid.

157 Ibid.

161 Ibid.